Integrating Partial Model Knowledge in Model Free RL Algorithms
نویسندگان
چکیده
In reinforcement learning an agent uses online feedback from the environment and prior knowledge in order to adaptively select an effective policy. Model free approaches address this task by directly mapping external and internal states to actions, while model based methods attempt to construct a model of the environment, followed by a selection of optimal actions based on that model. Given the complementary advantages of both approaches, we suggest a novel algorithm which combines them into a single algorithm, which switches between a model based and a model free mode, depending on the current environmental state and on the status of the agent’s knowledge. We prove that such an approach leads to improved performance whenever environmental knowledge is available, without compromising performance when such knowledge is absent. Numerical simulations demonstrate the effectiveness of the approach and suggest its efficacy in boosting policy gradient learning.
منابع مشابه
Integrating a Partial Model into Model Free Reinforcement Learning
In reinforcement learning an agent uses online feedback from the environment in order to adaptively select an effective policy. Model free approaches address this task by directly mapping environmental states to actions, while model based methods attempt to construct a model of the environment, followed by a selection of optimal actions based on that model. Given the complementary advantages of...
متن کاملBayesian Reinforcement Learning: A Survey
Bayesian methods for machine learning have been widely investigated, yielding principled methods for incorporating prior information into inference algorithms. In this survey, we provide an in-depth review of the role of Bayesian methods for the reinforcement learning (RL) paradigm. The major incentives for incorporating Bayesian reasoning in RL are: 1) it provides an elegant approach to action...
متن کاملIntegrating Reinforcement Learning with Models of Representation Learning
Reinforcement learning (RL) shows great promise as a model of learning in complex, dynamic tasks, for both humans and artificial systems. However, the effectiveness of RL models depends strongly on the choice of state representation, because this determines how knowledge is generalized among states. We introduce a framework for integrating psychological mechanisms of representation learning tha...
متن کاملTemporal Difference Models: Model-Free Deep RL for Model-Based Control
Model-free reinforcement learning (RL) is a powerful, general tool for learning complex behaviors. However, its sample efficiency is often impractically large for solving challenging real-world problems, even with off-policy algorithms such as Q-learning. A limiting factor in classic model-free RL is that the learning signal consists only of scalar rewards, ignoring much of the rich information...
متن کاملModel-free POMDP optimisation of tutoring systems with echo-state networks
Intelligent Tutoring Systems (ITSs) are now recognised as an interesting alternative for providing learning opportunities in various domains. The Reinforcement Learning (RL) approach has been shown reliable for finding efficient teaching strategies. However, similarly to other human-machine interaction systems such as spoken dialogue systems, ITSs suffer from a partial knowledge of the interloc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011